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ABSTRACT  

Time to event variables are commonly used in clinical trials where survival data are collected. When planning 
a trial and calculating the sample size, it is important to estimate not only the expected sample size but also 
the minimum value of the Hazard Ratio for which the trial can be considered successful (i.e. accepting the 
alternative hypothesis). Calculating the confidence interval for the HR when the difference of treatments is 
statistically significant, can be performed simulating censored survival data. Simulating censoring can be 
challenging, especially when the trial does not appropriate to a fixed duration or when high drop-out rate is 
expected. This is often the case in Oncology trials as patients exit the study prematurely (e.g. in case of AE 
or disease progression). In this work we present a case study where a dataset is simulated controlling for the 
resulting censoring rate. 

In particular we simulate data from an oncology trial comparing two treatments and provide an example to 
realize the simulation in SAS. We compare results with varied assumptions regarding drop-out rate and 
methods to model censoring. Finally, we investigate the effect of the censoring rate on potential bias in 
estimating the treatment effect using a Cox model.  

INTRODUCTION  

Simulation studies for time-to-event data are commonly used in clinical research to mimic trials where the 
measured outcome is the time until an event occurs. In particular, in oncology trials, mandatory efficacy 
endpoints are often Overall Survival (OS) or Progression Free Survival (PFS). In those cases the event is 
death or documented progression of disease respectively. In these kind of studies the event is know, if it 
happens during the study duration. However, it is not uncommon for patients to exit a study before the event 
occurs. These incomplete observations in survival data are referred to as censored data. The most common 
censoring mechanism in clinical research is right censoring, where the event of interest has not occurred by 
the end of the trial and time to event is known only to be greater than censoring time. 

Simulations of these type of trials are useful for example to calculate the minimum hazard ratio for which the 
null hypothesis is rejected. This can be used to estimate a threshold for the HR when planning a study with 
the respective sample size. 

The distribution of the time to event can be described by either a density function of a parametric distribution 
or a hazard function. Because of censoring, modeling the time to event is commonly realized through the 
hazard function. The Cox proportional hazard model is one of the most important statistical models used for 
censored survival data. It is parametrized in terms of the hazard function and it gives a measure of the 
correlation between covariates and time to event. 

Previous papers have described simulation of survival data from Cox proportional hazards models in a 
flexible framework [Bender et al.]. However, particular attention should be paid to simulate censoring. 

In studies with a fixed duration, censoring can be easily simulated by curtailing the time of observation when 
the event has not occurred before the fixed time of the study. In several trials (particularly in Oncology trials) 
that is not the case, since study duration may widely vary from one patient to another and the observation 
period might have a very large range. Moreover there is often a high drop out rate due to adverse event or 
other reasons such as patient’s choice or detriment to quality of life. For these reasons, simulating censored 
survival data that reflect a real Oncology trial is not a trivial task. What can be desired is to control for the 
censoring rate, trying to reproduce a rate that is similar to the observed one in the population of interest. 

 

Realizing such a simulation is an added value for the planning of a study on top of the sample size 
calculation and it is important especially in the scenario of a development plan when several considerations 
regarding the possible outcome of a trial need to be done. 
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METHODS 

The Cox proportional hazards model is given by 

 ( | )    ( )    (   ) 

where t is the time, x the vector of covariates,   the vector of regression coefficients and   ( ) is the baseline 
hazard function, i.e. the hazard function for x=0. The effect of the covariates have to be translated from the 
hazard to the survival times for simulation and analysis. This can be done easily if the baseline hazard is 
constant, i.e. the survival times are exponentially distributed. This is the reason why the exponential 
distribution is commonly used in simulations. Another frequently used distribution is the Weibull which is 
particularly useful when there are discrete covariates, as it is the case for two-arms trials where the covariate 
of interest is treatment. The Weibull parameters can be chosen such that the hazards are proportional and 
the true hazard ratio (HR) for the comparison of the two groups can be calculated. In that case, the true 
regression coefficient for the Cox model can be obtained from log(HR). 

The distribution function of the event time is 

 ( | )        (   ( )    (   ) 

Where the cumulative baseline hazard is   ( )  ∫   ( )  
 

 
. 

Let’s call C the censoring time with density function   ( | ), where   is the censoring parameter. The 
censoring time can be also modeled with a Weibull distribution. We then let       (   ) be the observed 

follow-up time. If     the subject is censored, otherwise the event is observed.  

The baseline hazard for a Weibull distribution is  

  ( )         

Where the cumulative hazard is   ( )      , the density function is   ( )        
      and the survival 

function is   ( )       
 

Censoring time is simulated from a Weibull distribution, adding a multiplicative factor F as Rand( 

"WEIBULL", Seed, (Lambda2) * Linear_Predict*&F.) [see Code].  

In this paper we present the SAS code to realize such simulations. The challenging part of the simulation is 
ways in which to choose such multiplicative factor F. Varying the parameter F gives different scenarios in the 
simulated data in respect of the resulting censoring rate. We propose an empirical method to choose F given 
the target censoring rate. 

 

CASE STUDY 

We consider an oncological study with two arms where we intend to demonstrate superiority of the 
experimental treatment compared to the best available supportive care. We simulate the dataset with a real 
effect on survival in order to find the 95%CI of the HR for which the trial can be considered successful, i.e. 
the null hypothesis is rejected.  

We simulate a study with two arms and we keep treatment as the only covariate. We simulate censoring 
keeping control on the censoring rate. In particular we simulate survival time, censoring time and censoring 
indicator in the case of rejection of null hypothesis. We then calculate for each simulated dataset, the 
censoring proportion and we select only the dataset where the censoring proportion is in the desired interval. 

In the case study, median survival time for treatment 1 is 10 months, while median survival time for treatment 
2 is 14 months, with a HR=0.71. Recruitment time is 24 months and follow up time is 9 months. The sample 
size is calculated to be 544 patients with 370 events. The observed percentage of censoring is 32%.  

We simulate the dataset considering the real values of median survival time from the two treatment groups. 
In order to reproduce the real case study, we can select the dataset with a censoring rate around between 
30% and 35%. We then proceed with a proc phreg and we choose only the cases where there is a 
statistically significance. At that point we calculate the HR with respective confidence interval. The Weibull 
distribution has a shape parameter equal to 1, which means constant hazard. The scale parameter is 

       where trt, the treatment, is the only covariate considered. If beta=1 the risk is the same in the two 

groups at time zero. In our case we set      (
 

    
). If the treatment is the only covariate, there is no 

difference in risk at time 0 and HR_0 is set to 1. We leave beta as an input parameter in our macro so that it 
can be set as one of the initial parameters. 
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The aim of our work is to understand the sensitivity to the parameter F in order to choose the best value to 
simulate the real consoring rate. In Fig 1 we consider the simulation of datasets with a censorig rate interval 
between 30% and 35%. We run the simulation for different values of the parameter F. We see that the 
maximum number of studies with the desired censoring rate is for F=2,1. 

As a sensitivity analysis we repeated the simulation for different target censoring rate. In Fig2 we report the 
simulation study with a target censoring rate [20%-25%] and we observe an optimal value for F given by 3,5. 
In Fig 3, the target censoring rate is [25%-30%] and the optimal value for F is 2,6. 

Under each figure we also report a table with input and output values for the simulation studies. In particular, 
we report the percentage of studies falling in the target censoring rate and for each of those, the percentage 
of studies that are actually statistically significant. We then report for each simulation study, the 95% 
confidence interval of the simulated HR. 

 

RESULTS AND DISCUSSION 

 

Our work aims to provide an easy to use simulation code in order to choose the optimal value of the 
multiplicative factor F to simulate censoring time from the Weibull distribution given a target censoring rate. 
In order to have a realistic simulation of the case study, F can be set to the value giving the maximum 
number of datasets in the target censoring rate.  

The higher limit of the 95%CI of the HR gives us a value for the HR which is still compatible with a trial where 
the statistical significance is reached for the alternative hypothesis. We observe, from the table of Fig 1, that 
the 95%CI of the HR changes depending on the number of studies considered and on the percentage of 
those studies with a p-value <0,05. Given that the precision can be increased with a higher number of 
simulations, this preliminar study gives us an idea of the variability of the HR considering the censoring rate. 

We observe that for a lower censoring rate we have a better estimate of the real HR with respect to a study 
where the censoring rate is high. Performing such simulation studies by varying the censoring rate, can be 
useful to understand HR expectations  from trial results and consequently to understand how close we are to 
the observation of a real effect. 
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Figure 1: Number of datasets (%) in the desired interval for censoring rate [30%-35%] varying the 
parameter F. (N. simulations =1000; Median 1=10mo; Median 2=14mo; HR=0.71) 

 

 

 

 

 

 

 

 

 

 

*Percentages are calculated on total number of simulations 

** Percentages are calculated on the number of datasets in the censored rate 
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F 
Datasets in 

Censored Rate (%)* 
Datasets p<0.05 (%)** 95% LCL for HR 95% UCL for HR 

2 73,4 85,7 0,690 0,699 

2,1 76 87,9 0,689 0,698 

2,2 72,6 87,1 0,694 0,704 

2,3 54,2 86,9 0,689 0,700 

2,4 37,5 87,7 0,694 0,707 

2,5 25,5 85,1 0,696 0,712 

2,6 16,3 88,3 0,680 0,702 

2,7 7,6 85,5 0,671 0,706 

2,8 3,2 87,5 0,679 0,728 

2,9 1,9 94,7 0,688 0,731 

3 0,5 100 0,641 0,784 

3,1 0,6 100 0,640 0,714 
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Figure 2: Number of datasets (%) in the desired interval for censoring rate [20%-25%] varying the 
parameter F. ( N. simulations =1000; Median 1=10mo; Median 2=14mo; HR=0.71) 

 

  

 

 

F 
Datasets in 

Censored Rate (%)* 
Datasets p<0.05 

(%)** 
95% LCL for HR 95% UCL for HR 

2,3 0,5 80 0,608 0,703 

2,4 1,4 100 0,676 0,776 

2,5 2,4 91,7 0,655 0,715 

2,6 10,1 88,1 0,687 0,710 

2,7 17,9 91,6 0,692 0,710 

2,8 27,8 88,5 0,694 0,710 

2,9 37,7 90,7 0,689 0,703 

3 52,1 88,3 0,698 0,710 

3,1 64,6 90,2 0,701 0,711 

3,2 73,7 89,7 0,702 0,711 

3,3 79,6 89,8 0,702 0,711 

3,4 82,3 90,4 0,698 0,706 

3,5 83,8 90,1 0,702 0,710 

3,6 80,4 91,5 0,699 0,708 

3,7 74,9 90,6 0,696 0,705 

3,8 68,3 90,3 0,698 0,708 

3,9 60,2 90,5 0,699 0,709 

4 51,3 90,2 0,696 0,707 

 

*Percentages are calculated on total number of simulations 

** Percentages are calculated on the number of datasets in the censored rate 
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Figure 3: Number of datasets (%) in the desired interval for censoring rate [25%-30%] varying the 
parameter F. ( N. simulations =1000; Median 1=10mo; Median 2=14mo; HR=0.71) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*Percentages are calculated on total number of simulations 

** Percentages are calculated on the number of datasets in the censored rate 
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F 
Datasets in 

Censored Rate (%)* 
Datasets p<0.05 

(%)** 
95% LCL for HR 95% UCL for HR 

2 5,1 92,1 0,673 0,714 

2,1 16 87,5 0,684 0,705 

2,2 29,2 88,7 0,688 0,702 

2,3 45,4 85,7 0,695 0,707 

2,4 61 87,7 0,696 0,705 

2,5 76,6 88,4 0,694 0,702 

2,6 80,9 89,7 0,698 0,707 

2,7 79,6 88,9 0,700 0,709 

2,8 74,1 88,2 0,694 0,703 

2,9 64,5 88,4 0,698 0,708 

3 50,6 86,6 0,688 0,699 

3,1 38,2 89,5 0,692 0,705 

3,2 28,7 89,2 0,694 0,708 

3,3 17,9 90,5 0,687 0,706 

3,4 13,1 87,8 0,685 0,705 

3,5 9,8 90,8 0,703 0,728 

3,6 4,3 90,7 0,682 0,726 

3,7 2,9 93,1 0,645 0,697 

3,8 1,3 84,6 0,665 0,748 

3,9 0,7 100 0,606 0,735 

4 0,5 80 0,682 0,767 
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CODE 

 

 

%macro Simulation( 

median1 = , 

median2 = , 

F=, 

Beta=, 

N_sim=, 

N_pz=, 

cens_L=, 

cens_U=, 

out= ); 

%let HR=%SYSEVALF(&median1./&median2.); 

data pop;  

 Seed= 1 ;  

 censored=.; 

 Beta1=&Beta.;  

 Lambda2=1/(log(2)/&median2.);  

 Lambda1=1/(log(2)/&median1.);  

  Do Sim = 1 To &N_sim. ; 

    Do Trt = 1 To 2 ; 

      Do _n_ = 1 To &N_pz. ; 

    ID+1; 

  if TRT=1 then do; 

        Linear_Predict = Exp(-Beta1 * Trt ) ; 

        Time = Rand( "WEIBULL", Seed, (Lambda1) * Linear_Predict) ; 

  Time_censor = Rand( "WEIBULL", Seed, (Lambda1) * Linear_Predict*&F.) 

; 

  Time_Days = Ceil( Time * 30 ) ; 

  end; 

 

  if TRT=2 then do; 

        Linear_Predict = Exp(-Beta1 * Trt ) ; 

        Time = Rand( "WEIBULL", Seed, (Lambda2) * Linear_Predict) ; 

  Time_censor = Rand( "WEIBULL", Seed, (Lambda2) * Linear_Predict*&F.) 

; 

        Time_Days = Ceil( Time * 30 ) ; 

  end; 

         if time_censor <= time then do; 

    censored=1;  

    time=time_censor; 

   end; 

   if time_censor > time then  

    censored=0; 

          Output ; 

      End ; 

    End ; 

  End; 

drop Linear_Predict; 

Run ; 

 

/*Tot of censoring x study*/ 

proc sql; 

create table cens_N as 

select count(censored) as cens_study, sim 

from pop 

where censored=1 

group by sim; 

run; 

quit; 
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data pop2; 

merge pop cens_N; 

by Sim; 

if cens_study=. then cens_study=0; 

format cens_perc 8.2; 

cens_perc=(cens_study/(&N_pz.*2)); 

if &cens_L.<=cens_perc<=&cens_U. then SIMFL=1; else SIMFL=0; 

run; 

 

/*Select studies in the target censoring rate */ 

data pop3;  

set pop2 (where=(SIMFL=1));  

run;  

proc sort data=pop3;by Sim;run; 

 

data pop3_N; 

set pop3;  

by sim;  

if first.sim; 

run;  

proc sql;  

select count(sim)  into :FL_tot 

from pop3_N; 

run;  

quit;  

 

/*Dataset summary by simulation*/ 

data summary_bysim_&out.;  

set pop2;  

by sim;  

if first.sim; 

cens_L=&cens_L.; 

cens_U=&cens_U.; 

F=&F.;  

L2=&median2.;  

L1=&median1.; 

T=&FL_tot.; 

P=(T/&N_sim.)*100; 

Label sim='N sim' cens_study='N Censored' cens_perc='% Censored' L2='Median 2' 

L1='Median 1' T='Tot Studies in the Cens Rate'  

cens_L='Lower limit % Cens' cens_U='Upper limit % Cens' P='% Studies in the Cens 

Rate'; 

keep sim cens_study cens_perc F L2 L1 T cens_L cens_U P ;  

run;  

 

/*Model*/ 

Ods Output ParameterEstimates=out_PHreg; 

Proc PHReg Data = pop3 ; 

  Model Time*Censored( 1 )=Trt / RiskLimits = Wald; 

  By Sim ; 

Run;  

 

/*Select the HR of stat significant sim */ 

data out_PHreg_1; 

set out_PHreg; 

if ProbChiSq<=0.05; 

run; 

 

proc sql;  

select count(sim)  into :S_tot 

from out_PHreg_1; 

run;  

quit;  
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/* 95% CI of HR*/ 

ods output summary=CI_HR; 

Proc Means Data = out_PHreg_1 alpha=0.05 CLM; 

  Class Parameter ; 

  Var HazardRatio; 

Run ; 

 

/*Dataset summary overall*/ 

data last; 

set summary_bysim_&out. end=eof; 

if eof then output; 

drop cens_study cens_perc; 

run;  

 

data sim.summary_&out.;  

set last; 

set CI_HR; 

PS=(NObs/&FL_tot.)*100; 

HR=&hr.; 

label NObs='Studies p<0.05' 

PS='% Studies p<0.05';  

drop Parameter; 

run;  

 

proc datasets NOLIST; delete Cens_n ci_hr last out_phger out_phreg_1 pop pop2 

pop3 pop3_n out_phreg; run; quit; 

%mend; 

 

%macro combine (max); 

data sim.summary_tot; 

  set 

  %do i = 1 %to &max.; 

    sim.summary_&i. 

  %end; 

  ; 

run; 

%mend; 

 

/**********************************************/ 

 

 

/*Target cens rate: (0.30;0.35) and F=2*/ 

%Simulation( 

median1 = 10, 

median2 = 14, 

F=2, 

Beta=log(1), 

N_sim=1000, 

N_pz=250, 

cens_L=0.30, 

cens_U=0.35, 

OUT=1 ); 
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